skip to main content


Search for: All records

Creators/Authors contains: "Anneville, Orlane"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Untangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass). Consequently, studies that only consider separable, unidirectional effects can produce divergent conclusions and equivocal ecological implications. To address this complexity, we use empirical dynamic modeling to assemble causal networks for 19 natural aquatic ecosystems (N24 ◦ ~N58 ◦ ) and quantified strengths of feedbacks among phytoplankton diversity, phytoplankton biomass, and environmental factors. Through a cross-system comparison, we identify macroecological patterns; in more diverse, oligotrophic ecosystems, biodiversity effects are more important than environmental effects (nutrients and temperature) as drivers of biomass. Furthermore, feedback strengths vary with productivity. In warm, productive systems, strong nitrate-mediated feedbacks usually prevail, whereas there are strong, phosphate-mediated feedbacks in cold, less productive systems. Our findings, based on recovered feedbacks, highlight the importance of a network view in future ecosystem management. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978–1995) and recent (1996–2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity. 
    more » « less
  4. Abstract. Empirical evidence demonstrates that lakes and reservoirs are warming acrossthe globe. Consequently, there is an increased need to project futurechanges in lake thermal structure and resulting changes in lakebiogeochemistry in order to plan for the likely impacts. Previous studies ofthe impacts of climate change on lakes have often relied on a single modelforced with limited scenario-driven projections of future climate for arelatively small number of lakes. As a result, our understanding of theeffects of climate change on lakes is fragmentary, based on scatteredstudies using different data sources and modelling protocols, and mainlyfocused on individual lakes or lake regions. This has precludedidentification of the main impacts of climate change on lakes at global andregional scales and has likely contributed to the lack of lake water qualityconsiderations in policy-relevant documents, such as the Assessment Reportsof the Intergovernmental Panel on Climate Change (IPCC). Here, we describe asimulation protocol developed by the Lake Sector of the Inter-SectoralImpact Model Intercomparison Project (ISIMIP) for simulating climate changeimpacts on lakes using an ensemble of lake models and climate changescenarios for ISIMIP phases 2 and 3. The protocol prescribes lakesimulations driven by climate forcing from gridded observations anddifferent Earth system models under various representative greenhouse gasconcentration pathways (RCPs), all consistently bias-corrected on a0.5∘ × 0.5∘ global grid. In ISIMIP phase 2, 11 lakemodels were forced with these data to project the thermal structure of 62well-studied lakes where data were available for calibration underhistorical conditions, and using uncalibrated models for 17 500 lakesdefined for all global grid cells containing lakes. In ISIMIP phase 3, thisapproach was expanded to consider more lakes, more models, and moreprocesses. The ISIMIP Lake Sector is the largest international effort toproject future water temperature, thermal structure, and ice phenology oflakes at local and global scales and paves the way for future simulations ofthe impacts of climate change on water quality and biogeochemistry in lakes. 
    more » « less
  5. Free, publicly-accessible full text available September 1, 2024
  6. Abstract Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change. 
    more » « less
  7. null (Ed.)
    Abstract Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade −1 , comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m −3 decade −1 ). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade −1 ), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade −1 to + 0.65 °C decade −1 . The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences. 
    more » « less
  8. Abstract

    The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind‐induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long‐term and high‐frequency lake datasets from 11 countries to assess the magnitude of wind‐ vs. rainstorm‐induced changes in epilimnetic temperature. We found small day‐to‐day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day‐to‐day epilimnetic temperature decreased, on average, by 0.28°C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 ± 2.7 m s−1, 1 SD) and by 0.15°C after the heaviest rainstorms (storm mean daily rainfall: 21.3 ± 9.0 mm). The largest decreases in epilimnetic temperature were observed ≥2 d after sustained strong wind or heavy rain (top 5thpercentile of wind and rain events for each lake) in shallow and medium‐depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm‐induced mean epilimnetic temperature decreases were typically <2°C. Day‐to‐day temperature change, in the absence of storms, often exceeded storm‐induced temperature changes. Because storm‐induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.

     
    more » « less